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Our Universe is “Invisible™ at the Highest Energies
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Localizing Sources with Cosmic Rays

Galactic

« Composition-dependent distance of resolving
power

* Nearby Sources?
» Attenuation creates neutrinos!

Nearby HE Gamma-Ray Sources

LHASSO Collaboration

b(]

* Nearby Sources Observed
(few dozen)
e Must be unobscured
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Doesn't have to be intergalactic density
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Obscured Sources

Sometimes (often?) the most
energetic particle production
sites have the most density
of “stuff” around them

BAT AGN Spectroscopic Survey
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Maybe even in our own Galaxy?

https://asd.gsfc.nasa.gov/archive/mwmw/mmw_images.html
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There must be more high-energy
astronomical objects out there
observable with neutrinos



Goal of Multi-Messenger Astronomy

Sources detected only in

neutrinos
GOAL;:
Sources detected
in neutrino-EM coincidence
Gravitational Waves Neutrinos
- LVK
- NANOGrav

Gamma Rays
- Fermi
- IACTs

Other EM Telescopes
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What do we gain”? = What questions can we answer?

What is making UHECR?

Are there HE astronomical objects that only neutrinos can trace?

What is the gamma-ray-neutrino relationship?

How are neutrinos accelerated to TeV/PeVs?
 AGN Core vs Jet?
« Which source types? What makes some sources “special” within their types?
 GRB has no neutrinos?

Mass Hierarchy

Cross section measurements beyond accelerator energies
« Which QCD model correctly predicts muon multiplicity?

Oscillation measurements at long and extreme baselines astronomy
« BSM effects of flavor oscillation (quasi-Dirac, decoherence)
 Monopoles

» Sterile neutrino signatures CR L grhysics

DM signatures via HE neutrinos
Primordial neutrinos?

Naoko Kurahashi Neilson (Drexel University)
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High Energy Fluxes Are Small
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Need Large Detectors

ANTARES (2007-2022) lceCube (2011-)

IceCube Lab
- 885 PMTs e e e IceTop
- — il - = = = 81 Stati
* 12 Lines Som —— ..‘.-:°-:‘-.‘.-‘ ————————— / 324 o?)tli(():glssensors
- 25 storeys .
* 3 PMTs / storey
IceCube Array

86 strings including 8 DeepCore strings
5160 optical sensors

1450 m
DeepCore

8 strings-spacing optimized for lower energies
480 optical sensors

Eiffel Tower

324 m

2450 m

2820 m

Images credit: IceCube collaboration
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Need To Overcome Background

Neutrino Telescopes must combat enormous background rates

]J

e Atmospheric muons and neutrinos many
orders higher rate

p = proton
L = muon
= pion

V = neutrino

* No veto (~ish), no beam,

et = electror

source(s) unknown in location/time e = positron
e Overburden is what it is (~2.5km) :
We had to wait for statistics and/or |
develop smarter ways to process the data! '\

Background Rates at IceCube Trigger:
o . . Atmospheric Muons > 10°x signal rate
Naoko Kurahashi Neilson (Drexel University) = Atmospheric Neutrinos > 103 x signal rate




Successful Decade!

Current Issue
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.

HOME > SCIENCE > VOL.361,NO.6398 > MULTIMESSENGER OBSERVATIONS OF A FLARING BLAZAR COINCIDENT WITH HIGH-ENERGY NEUTRINO...
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Multimessenger observations of a flaring blazar coinci-
dent with high-energy neutrino IceCube-170922A
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SCIENCE - 13 Jul2018 - Vol 361, Issue 6398 - DOI: 10.1126/science.aat1378

Neutrino emission from a flaring blazar

Neutrinos interact only very weakly with matter, but giant de
ceeded in detecting small numbers of astrophysical neutrinos
background, only two individual sources have been identified
nearby supernova in 1987. A multiteam collaboration detecte
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Evidence for neutrino emission from the nearby active

galaxy NGC 1068

+376 authors  Authors Info & Affiliations
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Nearby active galaxy emits neutr

Observations have shown a diffuse backgrounc
known to be of extragalactic origin. However, i
vidual sources that contribute to this backgrou
alyzed the arrival directions of astrophysical n
sources (see the Perspective by Murase). They

Naoko Kurahashi M
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NEUTRINO ASTROPHYSICS

Observation of high-energy neutrinos from the
Galactic plane

IceCube Collaboration*t

The origin of high-energy cosmic rays, atomic nuclei that continuously impact Earth’s atmosphere, is
unknown. Because of deflection by interstellar magnetic fields, cosmic rays produced within the Milky
Way arrive at Earth from random directions. However, cosmic rays interact with matter near their
sources and during propagation, which produces high-energy neutrinos. We searched for neutrino
emission using machine learning techniques applied to 10 years of data from the IceCube Neutrino
Observatory. By comparing diffuse emission models to a background-only hypothesis, we identified
neutrino emission from the Galactic plane at the 4.5¢ level of significance. The signal is consistent with
diffuse emission of neutrinos from the Milky Way but could also arise from a population of unresolved
point sources.

he Milky Way emits radiation across the
electromagnetic spectrum, from radio
waves to gamma rays. Observations at
different wavelengths provide insight into
the structure of the Galaxv and have iden-

energy gamma-ray point sources (also visible
in Fig. 1B), several classes of which are po-
tential cosmic-ray accelerators and therefore
possible neutrino sources (6-10). This makes
the Galactic plane an expected location of

neutrino (v,) with nuclei, as well as scattering
interactions of all three neutrino flavors [v,,
muon neutrino (v,), and o.] on nuclei. Be-
cause the charged particles in cascade events
travel only a few meters, these energy deposi-
tions appear almost point-like to IceCube’s
125-m (horizontal) and 7- to 17-m (vertical)
instrument spacing. This results in larger di-
rectional uncertainties than tracks. Tracks are
elongated energy depositions (often several
kilometers long), which arise predominantly
from muons generated in cosmic-ray particle
interactions in the atmosphere or muons pro-
duced by interactions of », with nuclei. The
energy deposited by cascades is often con-
tained within the instrumented volume (un-
like tracks), which provides a more complete
measure of the neutrino energy (19).
Searches for astrophysical neutrino sources
are affected by an overwhelming background
of muons and neutrinos produced by cosmic-
ray interactions with Earth’s atmosphere. At-
mospheric muons dominate this background;
IceCube records about 100 million muons for
every observed astrophysical neutrino. Whereas
muons from the Southern Hemisphere (above
IceCube) can penetrate several kilometers deep



Goal of Multi-Messenger Astronomy

Sources detected only in

neutrinos
GOAL;:
Sources detected
in neutrino-EM coincidence
Gravitational Waves Neutrinos
- LVK
- NANOGrav

EM: wide range of telescopes that

target
Gamma Ravs | - different wavelengths
- Fermi g - different FOV
- IACTs

We need wide ranges of
Olier Ebd. Tesssepes Neutrino Telescopes too!

Naoko Kurahashi Neilson (I




Global Neutrino Telescopes

- Baikal-GVD

. TRIDENT
M HUNT

i IceCube-Gen2
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New Hemisphere New Comers

7o} P-ONE

Pacific Ocean Neutrino Explorer

Leverage existing facilities
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Top Floats
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Huge telescopes in the South China Sea

Pathfinder strings deployed and recovered
rojp-0
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Expanding Volume of
Neutrino Telescopes
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Conclusions

There are so many questions in the
HE invisible Universe

Neutrino telescopes can provide
answers In the next decade

/ i & "
Women Observing Stars (1936 ) Ota Chou
National Museum of Modern Art, Tokyo

Naoko Observing Stars and Galaxies (2012) South Pole
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