The dark side of quantum enhanced sensing

Konrad W. Lehnert YCIU talk New Haven CT, May 30th, 2025

Scan cavity to search for resonant axion to photon conversion

haloscope (Sikivie 1983) at the quantum limit (HAYSTAC 2017)

Squeezed state receiver reduces measurement backaction

Squeezing increases bandwidth of maximum sensitivity

standard quantum limit

Quantum enhanced sensing is now routine in HAYSTAC

M. J. Jewell *et al.* (HAYSTAC Collaboration) Phys. Rev. D **107**, 072007 (2023).

Can we do better than 2?

Amplify signal before encountering measurement port noise

Y. Jiang, E.P. Ruddy, K.O. Quinlan, M. Malnou, N.E. Frattini, KWL, *PRX Quantum* **4**, 020302 (2023) K. Wurtz, Benjamin Brubaker, Y. Jiang, E. Ruddy, Daniel Palken, KWL, PRX Quantum **2**, 040350 (2021)

Dynamically couple axion cavity and readout mode by 3-wave mixing

$$\widehat{H}_{3WM} \propto \left(\hat{A} + \hat{A}^{\dagger}\right) \left(\hat{B} + \hat{B}^{\dagger}\right) \left(\hat{P} + \hat{P}^{\dagger}\right)$$

State swapping (C) interaction swaps states between two modes

Two-mode squeezing (G) induces amplification and entanglement

Two-mode squeezing (G) induces amplification and entanglement

Quantum non-demolition interaction yields bandwidth increase

Metelmann, A. and Clerk, A.A., *Physical Review X* 5.2 (2015): 021025. Chien, T-C., et al. *Physical Review A* 101.4 (2020): 042336.

Josephson Ring Modulator for realizing 3-wave mixing

couple to axion mode

Bergeal, N., et al. *Nature Physics* 6.4 (2010).

Josephson parametric converter for prototype demonstration

implementation

Engineering constraints of the axion cavity

resides in large magnetic field

quantum electric circuits must be remote

has tunable resonance frequency and coupling

Long, lossy cable separates axion cavity from JRM circuit

superconducting cable partially in large B-field

 $Q_{\text{cable}} \approx 2500$

cable-mode frequency spacing: 200 MHz

Couple axion cavity to JRM through a dark state

ω

many lossy cable modes

Dark state mediated coupling

$$\widehat{H}_{int} = \begin{pmatrix} \omega_A & g_S & 0\\ g_S & \omega_D - i\kappa_D/2 & g_S\\ 0 & g_S & \omega_C \end{pmatrix} \quad \omega_A = \omega_D = \omega_C$$

$$|0\rangle = \frac{1}{\sqrt{2}}(|A\rangle - |C\rangle)$$
 "dark" state

$$|\pm\rangle = \frac{1}{2} (|A\rangle \pm \sqrt{2}|D\rangle + |C\rangle)$$

 $|-\rangle$ ϕ_{1} $\phi_{2}=\phi_{1}$ $\phi_{3}=\phi_{1}$

 η_1

|0>

Remote entanglement via dark state transfer

Balance cable coupling to axion cavity and chip mode

 $\widehat{H}_{\text{int}} = g_s \widehat{A} \widehat{D}^{\dagger} + g_s \widehat{C} \widehat{D}^{\dagger} + g_c \widehat{C} \widehat{B}^{\dagger} + g_G \widehat{C}^{\dagger} \widehat{B}^{\dagger} + \text{h.c.}$

What complexity is added by the quantum engineer?

microwave trombone: Colby instruments

an additional tunable element...

Acknowledgements

Yale/JILA

Liz Ruddy Yue (Joyce) Jiang Kyle Quinlan Nick Frattini Konrad Lehnert

NIST Maxime Malnou

HAYSTAC collaborators

Yale Berkeley Johns Hopkins

Yale \mathcal{O} \triangleright