The Imprint of Dark Matter Self Interactions on Cosmic Collisions

Image Credit: Ron Miller, Scientific American

Mariangela Lisanti

Princeton University Flatiron Institute

Theory of Dark Sectors

What if new forces allow dark matter to interact with itself either elastically or inelastically?

Short-Range Elastic Self Interactions (SIDM) Inelastic/Dissipative Self Interactions (Atomic Dark Matter) Long-Range Elastic Self Interactions

Short-Range Elastic Self Interactions

Dark matter particles interact via some new mediator

Self scattering described by Yukawa potential in non-relativistic limit

Feng et al. [0905.3039]; Loeb and Weiner [1011.6374]; Kaplinghat, Tulin and Yu [1508.03339]

Short-Range Elastic Self Interactions

Anisotropic, velocity-dependent self scattering

$$\frac{d\sigma}{d\theta} = \frac{\sigma_0 \sin \theta}{2 \left[1 + \frac{v^2}{\omega^2} \sin^2 \frac{\theta}{2}\right]^2}$$

Two free parameters $\sigma_0 \equiv 4\pi \alpha_D^2 m_\chi^2 / m_\phi^4$ $\omega \equiv m_\phi / m_\chi$

SIDM Halo Evolution

Stage 1: Core Formation

Self interactions transfer heat inwards

→ Formation of isothermal core

Image Credit: Oren Slone

SIDM Halo Evolution

Stage 2: Core Collapse

Self interactions transfer heat outwards

→ Core heats up and shrinks

Image Credit: Oren Slone

Balberg et al. [astro-ph/0110561]; Koda and Shapiro [1101.3097]; Elbert et al. [1412.1477]; Essig et al. [1809.01144]; Nishikawa et al. [1901.0049]; Kahlhoefer et al. [1904.10539]; Turner et al. [2010.02924]

SIDM Halo Evolution

Image Credit: Oren Slone

Summary of Current Constraints

Oren Slone

Observational Consequences:

SIDM models favor velocity-dependent interactions

Gravothermal collapse must occur for densest dwarf galaxies

$$\frac{d\sigma}{d\theta} = \frac{\sigma_0 \sin \theta}{2 \left[1 + \frac{v^2}{\omega^2} \sin^2 \frac{\theta}{2}\right]^2}$$

Cosmological SIDM Simulations

New suite of cosmological N-body simulations of field dwarfs (~ $10^{10} M_{\odot}$) in the gravothermal collapse regime

(same initial conditions, different cross sections)

Silverman, Arora, Huseein, Kaplinghat, ML, Necib, and Sanderson [in prep]

A Complicated Picture Emerging

Significant mergers can turn off the gravothermal collapse process

Silverman, Arora, Huseein, Kaplinghat, ML, Necib, and Sanderson [in prep]

Ram-Pressure Effects

Scattering between dark matter in subhalo and host redistributes energy, potentially cutting off collapse process

This change in cross section suppresses ram pressure, bringing core density back up

Conclusions

Galaxies can serve as cosmic colliders, opening a window into the dark matter dynamics that impact their formation and evolution

Elastic short-range self interactions affect halo evolution, leading to a diversity of cores and cusps

SIDM halo morphology is highly sensitive to merger history, complicating interpretations from semi-analytic modeling

