Mechanical sensors for dark matter

David Moore, Yale YCIU Workshop May 30, 2025

Y()

Dark matter candidates

- There is astrophysical evidence for dark matter spanning from galactic to cosmological length scales
 - WIMPs and Axions are compelling candidates for this DM

Wave-like $(n/\lambda^3 \gg 1)$

Particle-like $(n/\lambda^3 \ll 1)$

Adapted from US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, arXiv:1707.04591

Dark matter candidates

- There is astrophysical evidence for dark matter spanning from galactic to cosmological length scales
 - WIMPs and Axions are compelling candidates for this DM... but a much larger set of models is consistent with astrophysical observations

Model independent search

 Thinking big, one can at least imagine what a model-independent terrestrial search for dark matter might look like

Carney et al., "Proposal for gravitational direct detection of dark matter," PRD 102, 072003 (2020), arXiv:1903.00492

- For sufficiently heavy dark matter $(m_{\chi} \sim m_{Pl})$ this *might* be possible, at least in principle
 - Measurement limits are a key issue \rightarrow need at least 30 dB beyond the "standard quantum limit"!!!

Wright Laboratory

The SIMPLE team at Yale:

(Search for new Interactions in a Microsphere Precision Levitation Experiment)

Jackie Baeza-Rubio Lucas Darroch Cecily Lowe Vasilisa Malenkiy Aaron Markowitz Siddhant Mehrotra David Moore Isabelle Ong Tom Penny Ben Siegel Yu-Han Tseng Jiaxiang Wang Molly Watts

With collaborators:

MAST-QG:

(*Macroscopic Superpositions Towards Witnessing the Quantum nature of Gravity*)

D. Moore, Yale

Levitated optomechanics

- Nano- to micro-sized dielectric masses can be optically trapped with ~100 mW of laser power
- Optical tweezers are a common tool in biophysics to measure ~pN forces
- Levitated masses are isolated both electrically and thermally
 - \rightarrow Force sensitivities at the zN level and acceleration sensitivities near a nano-g

Force and acceleration sensitivity vs particle mass:

Photographs of trapped nano/micro particles at Yale:

D. Moore, Yale

YCIU - May 30, 2025

Microsphere arrays

- Microsphere trap has been upgraded w ~10 x 10 arrays
- Similar technology to tweezer arrays fo
 - \rightarrow Real time control over trap position

D. Moore, Yale Siegel et al. PRA 111, 033514 (2025)

Rearrangement example (10 μ m spheres @ ~1 mbar):

YCIU - May 30, 2025

FPGA

1064 nm

Kinematic detection of (particle) dark matter

- While the momentum sensitivity is sufficient to detect dark matter scatters, the rate of scatters can be very small
- Most sensitive to dark matter models that primarily interact coherently with entire objects

Ton-scale WIMP detectors (e.g. LZ, DarkSide, ...):

Coherence only over a single nucleus:

Rate
$$\propto N_T A^2 \sigma_n$$

 $\gg 10^{23} \sim 10^4$

fg-ng scale trapped objects:

Monteiro et al., PRL 125, 181102 (2020), arXiv:2007.12067

r the second sec

Low momentum transfer:

Afek et al., PRL 128, 101301 (2022),

Coherence over an entire nano- or micro-sized object:

Rate
$$\propto (N_T)^2 \sigma_n$$

/
~ (10⁹)² to (10¹⁴)²

Can rival Avogadro's number!

arXiv:2111.03597

YCIU - May 30, 2025

D. Moore, Yale

8

Dark matter search (long range force)

- Acquired 5 days of dark matter search data in June 2020, four candidate events remain in non-Gaussian tail of distribution after all cuts
- Conservatively set limits on neutron coupling assuming candidates could arise from DM

Monteiro et al., PRL 125, 181102 (2020), arXiv:2007.12067

Future sensitivity

- Next steps:
 - Continue to push towards SQL (and beyond?)
 - Develop large arrays of sensors, and longer exposures

Manetsch et al., arXiv:2403.12021 (2024)

B. Siegel (Yale)

YCIU - May 30, 2025

DCM and A. Geraci, Quantum Sci. Tech. 6 014008 (2021), arXiv:2008.13197

10

Summary

- Optomechanical systems may provide completely new methods for searching for dark matter or other new weakly coupled particles
- We have recently performed searches for mechanical recoils from passing dark matter, and similar sensors may have applications to neutrino physics
- Ambitious future extensions of these techniques are likely possible well beyond existing searches, providing new tools to probe the invisible universe!

