### NANOGrav Physics Frontiers Center

### Targeted Searches for Gravitational Waves from Supermassive Black Hole Binaries

Forrest Hutchison, Chiara M. F. Mingarelli, Bjorn Larsen, and Rohan Shivakumar on behalf of the NANOGrav Collaboration

Department of Physics, Yale University



Mingarelli et al. for the NANOGrav Collaboration

### **PI Mingarelli**

#### Forrest Hutchison



#### Rohan Shivakumar



Bjorn Larsen

#### Background

NANOGrav has observed 67 millisecond pulsars for 15 years to search for nanohertz gravitational waves (GWs). In 2023, NANOGrav announced evidence for a stochastic GW background (GWB), believed to result from a population of supermassive black hole binaries (SMBHBs) [1]. Deterministic GW signals from individual SMBHBs, however, are too quiet to be resolved from the background at low frequencies.

While previous searches for deterministic GW signals have considered all frequencies across the entire sky, **targeted searches fix the frequency**, **sky location**, **and distance of a potential GW source** and are expected to improve sensitivity dramatically. This work is the first systematic catalog of targeted searches.

#### **EM** Signatures

Hydrodynamic simulations predict that AGN hosting **SMBHBs may have periodic** variability in their optical light curves [3]. Optical periods can be anywhere from one to six times the GW period, depending on orbital eccentricity. Other models predict periodic radio variability in AGN with jets, again corresponding loosely to the GW period [6].

Locating these signatures in optical and radio surveys gives sky locations and distances at which to search. Using the EM period to predict the GW frequency, we can further constrain our search and potentially detect a quieter signal from a particular source.

Binaries in the PTA band have orbital periods of several years, so candidates require decades of monitoring to establish periodicity.





For 111 targets, the evidence disfavors or narrowly favors the binary model. "Gondor" (Fig. 1) and "Rohan" (Fig. 2) are **two targets standing out at 5** $\sigma$  and 8 $\sigma$  (Fig. 3), moderately preferring the binary model. We highlight these for further investigation. Figs. 1 and 2 show posterior distributions for inclination 1, phase  $\Phi_0$ , polarization  $\psi$ , strain amplitude  $h_0$ , and chirp mass M<sub>s</sub> for these two targets. Uniform priors on all parameters are shown as colored lines.



Targeted searches deliver more constraining mass upper limits: **a median improvement of 57% over all-sky** searches. Three distinct classes of chirp mass posteriors are observed. Fig. 5 shows three examples from the 113 studied: "Peak" (5a), "Hill" (5b), and "Cliff" (5c). Vertical lines represent the 95% mass upper limit.



### Targets

2

We perform targeted searches for 111 AGN from the Catalina Real-time Transient Survey (CRTS) [5], plus two quasars with radio variability from the Owens Valley Radio Observatory 40m telescope monitoring program (OVRO) [6, 7].

Population models suggest that about 1% of AGN may host binaries [4], and the CRTS sample in particular might include around 1 genuine binary.

#### Conclusions & Outlook

This catalog includes no confident detections, but two interesting candidates with Bayes factors of 2.4 and 3.3, at  $5\sigma$  and  $8\sigma$ , suggest a need for more investigation. Upper limits on binary masses for individual targets were also reduced by a median of 57% over limits derived from all sky searches. Improvements indicate that detections could be within reach in the near future. The upcoming NANOGrav 20 year and IPTA DR3 data releases will be the most sensitive PTAs to date, and upcoming EM surveys will produce many more candidates.

Meanwhile, detection criteria have not been established, and the significance of these results is not known. Next steps include recovering injected GW signals from simulated binaries to better understand sensitivity, characterize signals, and calculate false alarm probabilities.

#### References

[1] Agazie, G., et al. 2023, ApJL, 951, L50.
[2] Arzoumanian, Z., et al. 2020, ApJ, 900, 102.
[3]Farris, B. D., et al. 2014, ApJ, 783, 134.
[4] Casey-Clyde, J. A., et al. 2025, ApJ, in press.
[5] Graham, M. J., et al. 2015, MNRAS, 453, 1562.
[6] O'Neill, S., et al. 2022, ApJL, 926, L35.
[7] de la Parra, P. V., et al. 2024, arXiv:2408.02645.

### The First Indication of Neutrino-Induced Nuclear Fission







### Self-Interacting Dark Matter, Core Collapse, and the Galaxy-Galaxy Strong Lensing Discrepancy

Isaque Dutra<sup>1</sup>, Priyamvada Natarajan<sup>1,2</sup>, Daniel Gilman<sup>3</sup>

- <sup>1</sup>Department of Physics, Yale University; <sup>2</sup>Department of Astronomy, Yale University; <sup>3</sup>Department of Astronomy & Astrophysics, University of Chicago
- Our best models predict that galaxy-galaxy strong lensing (GGSL) probability by cluster subhalos in the real universe is an order of magnitude stronger than CDM simulations
- GGSL is extremely sensitive to the inner density profile shape (how mass is distributed within the subhalos)
- Enhancement of the mass density by four orders of magnitude in the inner region appears to resolve this tension
- Core-collapsed SIDM offers a natural scenario for this level of steepening





<sup>(</sup>Dutra et al 2024)

# Core-collapsed SIDM halos as massive SMBH seeds

 $10^{2}$ 

Yarone Tokayer

PI: van den

- Self-interacting dark matter originally proposed to explain diversity of halo density profiles (Spergel & Steinhardt 2000)
- Early stages: heat flows *inward*  $\rightarrow$  create core
  - Conduction is collision-limited  $(O(t_r))$
- Late stages: heat flows *outward*  $\rightarrow$  gravothermal catastrophe
  - Conduction is mean free path-limited ( $O(100 \times t_r)$ )
- Can core-collapsed SIDM halo populations in the early universe seed SMBHs? (Jiang+25, Shen+25)
- How do encounters/interactions affect collapse timescales?







YCIU Symposium May 30 2025

Y. Tokayer

### Studying popIII feedback using ultra-faint galaxies





## **Rydberg/Axions at Yale (RAY)**

Building a microwave single-photon detector out of <sup>39</sup>K Rydberg atoms for dark matter axion searches

E. Graham et al, Phys. Rev. D 109, 032009 (2024)





alpha

ray





F = 2

# Cryogenic Underground Observatory for Rare Events





Wright

- Array of 988 TeO<sub>2</sub> crystals (742 kg) at O(10 mK)
- Neutrinoless double beta decay can help explain matterantimatter asymmetry and neutrino mass generation
- CUORE is a search for neutrinoless double beta decay
  - Taking data since 2019, and
  - Setting the world-leading limit on  $^{130}\text{Te}~0\nu\beta\beta$  half-life: >3.8×10^{25} yr
- Low backgrounds enable searches for other rare physics
  - e.g. axions, decay to excited nuclear states



# The Simons Observatory

Credit: Nicholas Galitzki





Credit: Mark Devlin



# Searching for Dark Energy with Roman

# **High Latitude Wide Area Survey**

### → 2000 square degrees

- Notably smaller than DESI or Euclid
- Much greater number density
- Better magnitude limit by 2 vs. Euclid
- → Probe LSS with BAO, LyA forest, higher-point statistics ⇒ Track expansion throughout cosmic time

### Launch: Fall 2026

Hubble mirror (2.4m) ⇒ 100x FOV

Wide Field Instrument and Coronagraph





### **Calibration & Systematics Redshift Interlopers**

- → Objects with incorrect redshifts can bias BAO measurement ■
- → Developed a method to self calibrate this effect out ⇒



- **Relative Flux Calibration** 
  - Correct for spatial and/or wavelength dependent detector response

### Alan Nguyen

### YCIU Workshop, May 30

# Why are high-redshift JWST AGN so different?

We EXPECT high-z AGN to be heavily obscured, with a major contribution coming from the host galaxy's ISM

### But is this enough to explain the **X-ray weakness**?



#### JWST AGN (2 < z < 9) lack [NeV] λ3426





Peca et al. (2023)

cientific

Eureka(S

# Project 8 simulation development

P. L. Slocum, K. M. Heeger, T. E. Weiss, Wright Laboratory, Yale

Energy spectrum of electrons emitted from tritium  $\beta^{-}$  decay



Direct neutrino mass measurement using tritium beta decay, targeting 40 meV sensitivity.

Cyclotron radiation emission spectroscopy (CRES)\*

Simulation challenge: Model multiple unique subsystems that are tightly coupled by EM fields.

Simulation purpose: Generate data to examine feasibility and performance of the experiment.



 $(\mathbf{a})$ 

ROJE

\*Monreal and Formaggio, Phys. Rev. D 80 (2009) 051301

# nEXO: A Search for Neutrinoless Double Beta Decay

- Liquid xenon TPC searching for  $0\nu\beta\beta$  in <sup>136</sup>Xe
- Evidence for Majorana neutrinos and origin of mass
- Observation of a process that produces more matter than antimatter



