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NANOGray has observed 67 millisecond pulsars
for 15 years to search for nanohertz gravitational
waves (GWs). In 2023, NANOGrav announced
evidence for a stochastic GW background (GWB),
believed to result from a population of
supermassive black hole binaries (SMBHBs) [1].
Deterministic GW  signals  from
SMBHBs, however, are too quiet to be resolved
from the background at low frequencies.

individual

While previous searches for deterministic GW'
signals have considered all frequencies across the
entire sky, targeted searches fix the frequency,
sky location, and distance of a potential GW
source and are expected to improve sensitivity
dramatically. This work is the first systematic
catalog of targeted searches.

EM Signatures

Hydrodynamic simulations predict that AGN
hosting SMBHBs may have periodic
variability in their optical light curves [3].
Optical periods can be anywhere from one to six
times the GW period, depending on orbital
eccentricity. Other models predict periodic radio
variability in AGN with jets, again corresponding
loosely to the GW period [6].

Locating these signatures in optical and radio
surveys gives sky locations and distances at which
to search. Using the EM period to predict the GW
frequency, we can further constrain our search
and potentially detect a quieter signal from a
particular source.

Binaries in the PTA band have orbital periods of
several years, so candidates require decades of
monitoring to establish periodicity.
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Targeted searches deliver more constraining mass upper limits: a median improvement of 57% over all-sky
searches. Three distinct classes of chirp mass posteriors are observed. Fig. 5 shows three examples from the 113
studied: “Peak” (5a), “Hill” (Sb), and “Cliff” (Sc). Vertical lines represent the 95% mass upper limit.
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‘We perform targeted searches for 111 AGN from
the Catalina Real-time Transient Survey (CRTS)
[5], plus two quasars with radio variability from
the Owens Valley Radio Observatory 40m
telescope monitoring program (OVRO) [6,7].

Population models suggest that about 1% of AGN
may host binaries [4], and the CRTS sample in
particular might include around 1 genuine binary.

Conclusions & Outlook

This catalog includes no confident detections, but
two interesting candidates with Bayes factors of
2.4 and 3.3, at 50 and 80, suggest a need for more
investigation. Upper limits on binary masses for
individual targets were also reduced by a median
of 57% over limits derived from all sky searches.
Improvements indicate that detections could be
within reach in the near future. The upcoming
NANOGrav 20 year and IPTA DR3 data releases
will be the most sensitive PTAs to date, and
upcoming EM surveys will produce many more
candidates.

Meanwhile, detection criteria have not been
established, and the significance of these results is
not known. Next steps include recovering injected
GW signals from simulated binaries to better
understand sensitivity, characterize signals, and
calculate false alarm probabilities.
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• Our best models predict that galaxy-galaxy strong lensing (GGSL) 
probability by cluster subhalos in the real universe is an order of 
magnitude stronger than CD M simulations

• GGSL is extremely sensitive to the inner density profile shape 
(how mass is distributed within the subhalos)

• Enhancement of the mass density by four orders of magnitude in the 
inner region appears to resolve this tension

• Core-collapsed SIDM offers a natural scenario for this level of 
steepening

(Dutra et al 2024)
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Y. TokayerYCIU Symposium May 30 2025

Core-collapsed SIDM halos as massive SMBH seeds

● Self-interacting dark matter originally proposed to explain 
diversity of halo density profiles 

● Early stages: heat flows inward → create core
○ Conduction is collision-limited (O(tr))

● Late stages: heat flows outward →gravothermal catastrophe
○ Conduction is mean free path-limited (O(100⨉tr))

● Can core-collapsed SIDM halo populations in the early universe 
seed SMBHs?

● How do encounters/interactions affect collapse timescales?

(figure: Pollack+15)

(Spergel & Steinhardt 2000)

(Jiang+25, Shen+25)

Yarone Tokayer PI: van den 
Bosch
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Studying popIII feedback using ultra-faint galaxies

Pratik Gandhi YCIU Symposium May 2025

Jessica Ti ll

Gandhi et al., in prep
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Rydberg/Axions at Yale (RAY)

Building a microwave single-photon 
detector out of 39K Rydberg atoms for 
dark matter axion searches
E. Graham et al, Phys. Rev. D 109, 032009 (2024)
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Cryogenic Underground Observatory for Rare Events

• Array of 988 TeO2 crystals (742 kg) at O(10 mK)
• Neutrinoless double beta decay can help explain matter-

antimatter asymmetry and neutrino mass generation
• CUORE is a search for neutrinoless double beta decay

• Taking data since 2019, and
• Setting the world-leading limit on 130Te 0νββ half-life: >3.8×1025 yr

• Low backgrounds enable searches for other rare physics
• e.g. axions, decay to excited nuclear states
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The Simons 
Observatory

Credit: Mark Devlin

Abitbol et al. 2025

Credit: Nicholas Galitzki

Ade et al. 2019

 0.5 m Small Aperture 
Telescopes (x3)

 6 m Large Aperture 
Telescope

 27, 39, 93, 145, 225, 
280 GHz
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Searching for Dark Energy with Roman
High Latitude Wide Area Survey
➔ 2000 square degrees

◆ Notably smaller than DESI or Euclid
◆ Much greater number density
◆ Better magnitude limit by 2 vs. Euclid

➔ Probe LSS with BAO, LyA forest, higher-point 
statistics ⇒ Track expansion throughout cosmic 
time

Launch:
Fall 2026

Hubble mirror 
(2.4m) ⇒ 100x 
FOV

Wide Field 
Instrument 
and 
Coronagraph

Calibration & Systematics
Redshift Interlopers
➔ Objects with incorrect redshifts 

can bias BAO measurement
➔ Developed a method to self 

calibrate this effect out ⇒
Relative Flux Calibration
➔ Correct for spatial and/or wavelength 

dependent detector response

Alan NguyenYCIU Workshop, May 30
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Why are high-redshift JWST AGN so different?

Alessandro Peca30-May-2025

Peca et al. (submitted)

JWST AGN (2 < z < 9) lack [NeV] λ3426

Peca et al. (2023)

We EXPECT high-z AGN to be heavily obscured, with
a major contribution coming from the host galaxy’s ISM

But is this enough to explain the X-ray weakness?
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nEXO: A Search for 
Neutrinoless Double Beta 
Decay

Liquid xenon TPC searching for 0𝜈𝛽𝛽 in 136Xe
Evidence for Majorana neutrinos and origin of 
mass
Observation of a process that produces more 
matter than antimatter

S Wilde - YCIU Workshop 2025
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